PRÁCTICA 6

NÚMEROS COMPLEJOS Y POLINOMIOS

NÚMEROS COMPLEJOS

Ejercicio 1.- Dar la forma binómica de *z*.

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$

b)
$$z = (\sqrt{2} + i)(\sqrt{3} - i)$$

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$
 b) $z = (\sqrt{2} + i)(\sqrt{3} - i)$ c) $z = (3 + \frac{1}{3}i)(3 - \frac{1}{3}i) + (3 + 2i)$

Ejercicio 2.- Dar la forma binómica de *z*.

a)
$$z = (1+2i)(1-2i)^{-1}$$

b)
$$z = (1+i)(2+3i)\overline{(3+2i)}$$

c)
$$z = (1+i)^{-1}(\sqrt{2} + \sqrt{2}i) + (-2+5i)$$

Ejercicio 3.- Calcular |z|.

a)
$$z = (\sqrt{2} + i) + (3\sqrt{2} - 3i)$$

b)
$$z = (1+ai)(1-ai)^{-1}$$
 $a \in \mathbb{R}$

c)
$$z = (3i)^{-1}$$

d)
$$z = ||1 - i| + i| + i$$

e)
$$z = (1+i)(1-2i)(3-i)$$

f)
$$z = 3(1+3i)^{10}$$

Ejercicio 4.- Dar la forma binómica de \overline{z} .

a)
$$z = |1 - i| + i$$

b)
$$z = ||1+i|+i|+i$$

c)
$$z = (1-2i)(2-i)$$

d)
$$z = (1+3i)(1-3i)$$

Ejercicio 5.- Representar en el plano todos los $z \in \mathbb{C}$ tales que:

a)
$$|z| = 3$$

b)
$$|z| \le 2$$

c)
$$z = \overline{z}$$

Ejercicio 6.-

a) Representar en el plano el conjunto $B = \{z \in \mathbb{C} / |z+1-i| \le 2\}$.

b) Representar en el plano el conjunto B = $\{z \in \mathbb{C}/|z+1| \le |z-3-i|\}$.

c) Si A = $\{z \in \mathbb{C} / \text{Re } z \le 1, \text{ Im } z \le \frac{1}{2}\}\ \text{y B} = \{z \in \mathbb{C} / |z - 1 - 3i| = 5\}, \text{ representar}$ $C = A \cap B$.

Ejercicio 7.- Escribir en forma binómica todos los $z \in \mathbb{C}$ tales que:

a)
$$z^2 = 1 - 4\sqrt{3}i$$

b)
$$z^2 = 16 + 14\sqrt{3}i$$

c)
$$z^2 + 2z + 3 = 0$$

d)
$$z^2 = 5 - 2iz$$

Ejercicio 8.- Hallar todos los $z \in \mathbb{C}$ tales que su conjugado coincide con su cuadrado.

Ejercicio 9.- Calcular Re z e Im z.

a)
$$z = 2(\cos \pi + i \sin \pi)$$

b)
$$z = 3(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi)$$

c)
$$z = (\cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi)$$

d)
$$z = 2(\cos{\frac{7}{4}}\pi + i\sin{\frac{7}{4}}\pi)$$

Ejercicio 10.- Escribir *z* en forma trigonométrica.

a)
$$z = \sqrt{5}$$

b)
$$z = -6$$

c)
$$z = 15i$$

d)
$$z = -\frac{1}{3}i$$

e)
$$z = \sqrt{5} + \sqrt{5}i$$

f)
$$z = 3 - \sqrt{3}i$$

$$g) z = -3(\cos 0 + i \sin 0)$$

h)
$$z = 3(\cos\frac{\pi}{2} - i \sin\frac{\pi}{2})$$

i)
$$z = 2(\cos\frac{\pi}{3} + i\cos\frac{\pi}{3})$$

j)
$$z = \frac{\pi}{2}i(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

Ejercicio 11.- Representar en el plano.

a)
$$A = \{ z \in \mathbb{C} / \arg z = 0 \}$$

b) B =
$$\{z \in \mathbb{C} / \frac{1}{2}\pi \le \arg z \le \frac{5}{4}\pi\}$$

c)
$$C = \{z \in \mathbb{C} / |z| = 5, 0 \le \arg z \le \frac{2}{3}\pi$$

c)
$$C = \{z \in \mathbb{C} / |z| = 5, \ 0 \le \arg z \le \frac{2}{3}\pi\}$$
 d) $C = \{z \in \mathbb{C} / |z+1-i| \le 3, \ \frac{\pi}{6} \le \arg z \le \frac{\pi}{3}\}$

Ejercicio 12.-

- a) Escribir en forma trigonométrica $z = (1+i)(\frac{\sqrt{3}}{2} \frac{1}{2}i)$
- b) Escribir en forma binómica $z = (-3\sqrt{3} + 3i)^{15}$
- c) Escribir en forma binómica $z = \frac{1+i}{(-\sqrt{3}+i)^5}$

Ejercicio 13.- Encontrar todas las raíces *n*-ésimas de *w* para:

a)
$$n = 3$$
 $w = 1$

$$(n) n = 5 w = -1$$

b)
$$n = 5$$
 $w = -3$ c) $n = 4$ $w = -1 - \sqrt{3}i$

Ejercicio 14.- Determinar todos los $z \in \mathbb{C}$ tales que $z^8 = \frac{1-i}{\sqrt{3}+i}$

Ejercicio 15.- Encontrar todos los $z \in \mathbb{C}$ que satisfacen:

a)
$$z^3 = i \overline{z}^2$$

b)
$$z^{10} = -4\overline{z}^{10}$$

c)
$$z^5 - \overline{z} = 0$$

d)
$$z^4 + z^{-4} = 0$$

e)
$$z^3 + 9i \overline{z}^2 |z| = 0$$

a)
$$z^3 = i\overline{z}^2$$
 b) $z^{10} = -4\overline{z}^{10}$ c) $z^5 - \overline{z} = 0$
d) $z^4 + z^{-4} = 0$ e) $z^3 + 9i\overline{z}^2 |z| = 0$ f) $z^4 = (\frac{3}{2} - i\frac{\sqrt{3}}{2})^8$

Ejercicio 16.-

- a) Escribir en forma binómica $e^{i\pi}$, $e^{i\frac{\pi}{3}}$, $2e^{-i\pi}$, $e^{i\frac{5}{6}\pi}$.
- b) Expresar en forma exponencial las raíces quintas de -1.
- c) Probar que $\forall t \in \mathbb{R}$ es $\cos t = \frac{e^{it} + e^{-it}}{2}$ y $\sin t = \frac{e^{it} e^{-it}}{2i}$

POLINOMIOS

Ejercicio 17.- Calcular PQ, 3P + Q y $P^2 - Q$ e indicar el grado de cada uno.

a)
$$P(x) = 2x + 1$$

$$Q(x) = x^2 + 3x - 2$$

b)
$$P(x) = 3x^2 + x - 1$$

a)
$$P(x) = 2x + 1$$
 $Q(x) = x^2 + 3x - 2$
b) $P(x) = 3x^2 + x - 1$ $Q(x) = -9x^2 - 3x + 6$

c)
$$P(x) = x^3 - 3$$

$$Q(x) = -x^3 + 2x^2 + 1$$

Ejercicio 18.- Encontrar, si existen, a, b y c en \mathbb{R} tales que:

a)
$$3x - 2 = a(x^2 + x + 3) + b(x^2 - 2x + 1) + c(x^2 - 3)$$

b)
$$(2x-1)(x+1) = ax^2 + b(x+1)(x+3)$$

Ejercicio 19.- a) Determinar $a \in \mathbb{R}$ tal que:

i) Si
$$P(x) = ax^3 - 3ax^2 + 2$$
, sea $P(2) = 3$

sea
$$P(2) = 3$$

ii) Si
$$P(x) = x^3 + 3x^2 + a$$

ii) Si $P(x) = x^3 + 3x^2 + a$, P tenga a cero como raíz

iii) Si
$$P(x) = ax^2 + ax + 3$$
, sea $P(-1) = 3$ y gr $P = 2$

sea
$$P(-1) = 3$$
 y gr $P = 2$

- b) Determinar a, b y c en \mathbb{R} para que:
- i) $P(x) = ax^2 + bx + c$ tenga a 1 y -1 por raíces

ii)
$$P(x) = x^2 + 2bx + a$$

$$Q(x) = ax^3 - b$$

ii) $P(x) = x^2 + 2bx + a$ y $Q(x) = ax^3 - b$ tengan a 2 como raíz común.

Ejercicio 20.- Determinar todas las raíces de *P*.

a)
$$P(x) = x^2 + ix + 1$$

b)
$$P(x) = x^2 + (1 - i)x + 1$$

c)
$$P(x) = x^2 + 2x + 1$$

d)
$$P(x) = ix^5 - 1$$

Ejercicio 21.- Hallar todas las raíces de *P*.

a)
$$P(x) = 3x^3 + x^2 + 12x + 4$$

b)
$$P(x) = \frac{1}{3}x^3 + 2x^2 + \frac{2}{3}x - 7$$

c)
$$P(x) = x^4 + 2x^3 - 9x^2 - 18x$$

d)
$$P(x) = x^4 - x^3 - 9x^2 - x - 10$$
 sabiendo que *i* es raíz

e)
$$P(x) = x^5 - 25x^3 + 85x^2 - 106x + 45$$
 sabiendo que $(2 + i)$ es raíz

f)
$$P(x) = x^4 - \frac{9}{4}x^2 - \frac{9}{4}$$

g)
$$P(x) = x^6 - 2x^4 - 51x^2 - 108$$
 sabiendo que $P(-\sqrt{3}i) = 0$

Ejercicio 22.- Dado $P(x) = 2x^4 - 6x^3 + 7x^2 + ax + a$, determinar $a \in \mathbb{R}$ sabiendo que (1+i) es raíz de P y hallar las restantes raíces de P.

Ejercicio 23.- Escribir $x^4 + 1$ como producto de polinomios irreducibles en $\mathbb{C}[X]$ y en $\mathbb{R}[X]$.

Ejercicio 24.- Determinar la multiplicidad de α como raíz de P.

a)
$$P(x) = (x^2 - 1)(x - 1)^3(x^5 - 1)$$
 $\alpha = 1$

b)
$$P(x) = x^4 + 3x^3 + 12x^2$$
 $\alpha = 0$

c)
$$P(x) = x^3 - x^2 - 5x + 6$$
 $\alpha = 2$

d)
$$P(x) = (x^4 + 1)(x^2 + 1)(x^3 + i)$$
 $\alpha = i$

Ejercicio 25.- Hallar todas las raíces del polinomio *P* y escribirlo como producto de polinomios de grado 1.

a)
$$P(x) = x^5 - 6x^4 + 10x^3 + 4x^2 - 24x + 16$$
, y se sabe que *P* tiene una raíz triple.

b)
$$P(x) = 4x^3 + 8\sqrt{3}x^2 + 15x + 3\sqrt{3}$$
, y se sabe que P tiene una raíz doble.

Ejercicio 26.-

- a) Hallar $P \in \mathbb{R}[X]$, de grado mínimo, que tenga a 1/2 como raíz simple, a (1+i) como raíz doble y que verifique que P(0) = -2.
- b) Hallar todos los polinomios P con coeficientes reales, de grado 3, que tengan a (-2) como raíz doble y que verifiquen P(1) = P(-1).

Ejercicio 27.- Sabiendo que $Q(x) = 81x^4 - 1$ y $P(x) = 9x^4 + 27x^3 - 8x^2 + 3x - 1$ tienen alguna raíz común, encontrar todas las raíces de P.

Ejercicio 28.- Sea $P(x) = 2x^3 - 5x^2 + 4x + 1$, y sean a, b y c sus raíces.

Calcular:
$$a+b+c$$
 abc $a^2+b^2+c^2$ $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Ejercicio 29.- Calcular la suma y el producto de las raíces séptimas de la unidad.

Ejercicio 30.-

a) Sea
$$P(x) = 3x^3 - 2x^2 + x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ para que la suma de dos de las raíces de P sea igual a -1.

b) Sea
$$P(x) = x^3 + 2x^2 - 7x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ de manera que una de las raíces de P sea igual a la opuesta de otra.

c)
$$P(x) = 3x^3 + x^2 - 2x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ tal que una de las raíces de *P* sea igual a la suma de las otras dos.

Ejercicio 31.-

a) Encontrar un polinomio *P*, de grado a lo sumo 3, que satisfaga:

$$P(1) = 1$$
 ; $P(0) = -1$; $P(2) = 2$; $P(-1) = 0$

b) Encontrar la ecuación de una parábola que pase por P₁, P₂ y P₃, donde

$$P_1 = (-1,1)$$
 ; $P_2 = (0,1)$; $P_3 = (2,-2)$

c) Encontrar un polinomio de grado 4 que satisfaga:

$$P(-1) = -1$$
 ; $P(0) = 1$; $P(1) = 4$

EJERCICIOS SURTIDOS

1. Hallar todos los $z \in \mathbb{C}$ tales que:

a)
$$z^3 = 3iz\overline{z}$$

b)
$$(1+\sqrt{3}i)z^3 = 2\overline{z}$$

2. Sea
$$z \in \mathbb{C}$$
, $z \neq 1$, tal que $|z| = 1$. Calcular $\text{Im}(i\frac{1+z}{1-z})$.

3. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique:

$$P(1+i) = 0$$
; -1 es raíz doble de P ; $Im(P(i)) = 28$

- **4.** Sea $P(x) = (x^3 ax^2 a^2x + 1)(x^2 a^2)$. Hallar a para que -1 sea raíz doble de P.
- **5.** Sean $P(x) = x^4 + x^3 7x^2 8x 8$ y $Q(x) = x^3 1$. Se sabe que P y Q tienen al menos una raíz común. Hallar todas las raíces de P en \mathbb{C} .
- **6.** Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique simultáneamente: las soluciones de $z^2 = 5\overline{z}$ son raíces de P; P tiene alguna raíz doble; P(1) = 31.
- 7. Encontrar todas las raíces de $P(x) = x^5 + x^4 + x^3 + 2x^2 12x 8$, sabiendo que tiene alguna raíz imaginaria pura.

- **8.** a) Hallar todas las raíces sextas de (1 + i)
- b) ¿Existe una raíz sexta de (1 + i) cuyo conjugado sea también raíz sexta de (1 + i)?
- c) Hallar el producto de todas las raíces sextas de 1 + i.
- **9.** a) Hallar el resto de la división de P por (x-3)(x+2), si P(3)=1 y P(-2)=3
- b) Calcular el resto de la división de $P(x) = x^n 2x^{n-1} + 2$ por $x^2 + x$.
- c) Los restos de dividir a P(x) por (x+2), (x-3) y (x+1) son 3, 7 y 13 respectivamente. Calcular el resto de la división de P(x) por (x + 2)(x - 3)(x + 1)
- d) Calcular el resto de la división de $P(x) = (\cos a + x \sin a)^n \text{ por } x^2 + 1$.
- **10.** Sea $P \in \mathbb{R}[X]$ y $Q(x) = x^3 2x^2 + x$. Hallar el resto de la división de P por Q sabiendo que P(0) = -1; P(1) = 3; $\partial P(1) = -3$.
- **11.** Encontrar todos los $z \in \mathbb{C}$ tales que $z^7 \overline{z}^3 = -2^{10} i$.
- **12.** Hallar z_1 y z_2 tales que ambos sean soluciones de $(1-i)z^2 = (2+2i)\overline{z}$ y que además verifiquen Re $(z_1) < 0$; Im $(z_1 \cdot \overline{z}_2) > 0$.
- 13. Encontrar un polinomio $P \in \mathbb{R}[X]$ de grado mínimo que tenga por raíces a las $(2 \operatorname{Im} z - i \operatorname{Re} z)^2 = -5 + 12i$. soluciones de la ecuación
- **14.** Hallar un polinomio $P \in \mathbb{R}[X]$ de grado 4, que cumpla las siguientes condiciones:
- i) el coeficiente principal de P es igual a 6
- ii) -1-i es raíz de P
- iii) el cociente entre dos de sus raíces reales es igual a 4 iv) P(0)=192
- **15.** Graficar los $z \in \mathbb{C}$ tales que $z^4 = (\overline{z})^4$ y |Re(z)| < 1.
- **16.** Hallar todos los $z \in \mathbb{C}$ tales que $z^6 = i(\overline{z})^{-4}$ e $\text{Im}(z^3) < 0$.
- 17. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que tenga por raíces a todas las soluciones de la ecuación $z^4 \overline{z} = 2i |z|^4$.
- **18.** Hallar todas las raíces de $P(x) = x^4 4x^3 + 3x^2 + 8x 10$ sabiendo que la suma de sus raíces reales es igual a cero.
- 19. Se sabe que el polinomio $P(x) = x^4 2x^3 + 2x^2 8x 8$ tiene alguna raíz imaginaria pura. Hallar todas las raíces de *P* y escribir *P* como producto de polinomios de grado 1.